

Pergamon

Tetrahedron Letters, Vol. 35, No. 47, pp. 8787-8790, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)01951-7

Preparation of Optically Active Aziridine Carboxylates by Lipase-Catalyzed Alcoholysis

Monique Martres,¹ Gérard Gil*¹ and Alain Méou²

1 Bioconversion- LASCO- associé au CNRS, case 532, Faculté des Sciences et Techniques de St Jérôme, 13397 Marseille Cedex 20, France. 2 Laboratoire de Synthèse Organique Sélective- associé au CNRS, Faculté des Sciences de Luminy, case 901, F-13288, Marseille Cedex 9, France.

Abstract: Aziridine carboxylates alcoholysis by lipases depends of the N-substitutent. N-alkyl and N-aryl compounds have been resolved with medium to good enantiomeric purity by enzymatic alcoholysis catalyzed by pig pancreatic (PPL) or Candida cylindracea lipase (CCL).

Aziridines, like epoxides, possess a large synthetic potential. In a recent review, Tanner¹ reported different uses of optically active aziridines:

- as chiral synthons for the enantioselective synthesis of aminoacids, 2 β -lactams, 3 pyrrolidines, 4 polymers, 5

- as chiral auxiliaries or ligands.⁶

Transformation of chiral epoxides,⁷ dehydration of optically active aminoalcohols,⁸ condensation of metal enolates with chiral imines,⁹ asymmetric aziridination of alkenes,¹⁰ resolution of the racemic compound by complexation¹¹ are the main ways to synthesize optically active aziridines.

Our previous studies on the resolution of cyclopropylcarbinols by means of lipases¹² led us to apply the same strategy in order to prepare optically active aziridine carboxylates. Surprisingly, despite their intensive use for the resolution of a wide array of racemic organic structures or in asymmetric synthesis,¹³ hydrolases did not receive the same attention regarding the resolution of aziridines.¹⁴

Thus, we have first studied the reactivity of various aziridine carboxylates¹⁵ in lipase-catalyzed alcoholyses (Scheme 1) which were preferred to hydrolyses because of the inherent instability of aziridine carboxylic acids.¹⁶

Scheme 1

With respect to the enzymes used in this study (PPL and CCL), the results summarized in Table 1 show that:

- while N-alkyl and N-aryl aziridine carboxylates 1 give esters 2, N-tosyl, N-mesyl and N-dimethyl(1,1,2trimethylpropyl)silyl 1 are recovered unchanged after 10 days,

- the N-acyl and N-carboxyalkyl aziridines undergo instead the alcoholysis of the amide bond to give N-H aziridines 3. In the case of the iso-propyl N-acetyl aziridine carboxylate, contrary to the results reported by Moretti et al. for hydrolyses of the methyl ester,^{14e} we isolated only racemic 3 when reactions were stopped before completion.

Table 1

^l**Yield for incomplete conversion of the substrate.**

Accordingly, we decided to **study the efficiency of the kinetic resolution using N-alkyl axiridine carboxylates as substrates (Scheme 2). All the enantiomeric excesses of the axiridines reported in Table 2 were determined by chromatographic analysis on chiral HPLC or GC columns .17**

As shown by the initial rates, the enzymatic reaction is very sensitive to the bulk of the N-alkyl substituent: - with PPL, N-Me esters react faster than N-tert-Bu, N-Bn and N-iso-Pr esters which have similar initial rates - with CCL, the following order of decreasing reactivity was observed: N-iso-Pr > N-tert-Bu > N-Bn.

It has been shown previously13c that the use of irreversible conditions can allow to drsmaticaliy improve the stereoselectivity of lipase-catalyzed resolutions. In the butanolysis of N-iso-Pr or N-tert-Bu aziridine carboxylates, the best enantioselectivity is indeed obtained with trifluoroethyl esters (entries 4,5 and 8,9). **Moreover, in this case, the reaction rate is higher than that observed with methyl esters (entries 2,3 and 6,7).**

As can be seen by comparing the respective E values, under irreversible conditions, the two enzymes display similar enantiselectiviies toward N-iso-Pr aziridine (entries 4 and 5) while CCL appears more **enantioselective than PPL toward N-tert-Bu aziridine (entries 8 and 9).**

All the experiments were pcrfonned **at 40% in hexane with 15Omg of enzyme for lmmol of substrae.** Pig pancreatic lipase (Fluka) PPL 3.5 U/mg, *Candida cylindracea* lipase (Sigma) CCL 750 U/mg.

*** Total yield after purification**

***** l **The enantiomeric ratio E was calculated as reported in ref. 13a**

*** Initial rate in um substrate transformed/min/U.

So far, we have shown that lipase-catalyzed alcoholysis gives both enantiomers of aziridine carboxylates in good yield and medium to high e.e, the best e.e. being obtained with PPL and N-Me, N-iso-Pr and N-Bn aziridine carboxylates. The use of other lipases and esterases, combined with variation in the substitution pattern of the starting aziridines, should allow to improve the efficiency of the resolution. The determination of the absolute configuration of the optically active products obtained in this study is currently in progress in order to compare the experimental results of the resolution and the theoretical predictions using active site models.¹⁸

We are indebted to Daicel Company for the "University Program" facilities and the Pr. Christian Roussel, *EhWPICAM - Marseille, for helpfiI &cussions and suggestions concerning the enantiomeric excess* **determination.**

References and Notes

- 1- Tanner D., *Angew. Chem. Int. Ed. Engl.* 1994, 33, 599-619.
- 2- **a** Baldwin, J.E.; Adlington, R-M.; O'Neil, LA.; Schofield, C.; Spivey, A.C.; Sweeney, J.B.J. Chem. Sot., *Chem. Commun.* **1989**, 1852-1854.
	- b Legtera, J.; Willems, J.G.H.; Thijs, L.; Zwanenburg, B. Rec. Xruv. *Chim. Pays-Bus* **1992,111, 59-68.**
- **^C**Dubois, L.; Dodd, R.H. *Tetrahedron* **1993,49,901-910 and references cited therein.**
- **3- a Deyrup,** J.k; **Clough,** *S.C. J. Org. Chem* **1974,39,902-907.**
- **b** Cainelli, G.; Panunzio, M.; Giacomini, D. *Tetrahedron Lett.* **1991**, 32, 121-124.
- **^C**Van der Steen, F.H.; van Koten G. *Tetrahedron* **1991,47,7503-7524.**
- 4-a Woller, P.B.; Cromwell, N.H. J. Org. Chem. 1970, 35, 888-898.
- Hassan, M.E. Gazz. Chim. Ital. **1992**, 122, 7-9.
- *s-* Tsuboyama, K.; Tsuboyama, S.; Yanagati, M. *Bull. Chem. Sot. Japan* **1%7,40,2954-2957.**
- 6. Tanner D. **Rue&** Appi. *Chem.* 1993,65,1319-1328.
- Ittah, Y.; Sasson, Y.; Shahak, I.; Tsaroom, S.; Blum, J.J. Org. Chem. 1978, 43, 4271-4273.
- **b** Le Merrer, Y.; Duréault, A.; Greck, C.; Micas-Languin, D.; Gravier, C.; Depezay, J.C. Heterocycles **1987,25,541-548.**
- c Tanner, D.; Somfai, P. Tetrahedron 1988, 44, 619- 624.
- d Legters, J.; Thijs, L.; Zwanenburg, B. *Tetrahedron Lett.* 1989, 30, 4881-4884.
- **II- a Nakagawa, Y.; Tsuno, T.;** Nakajima, L; Iwai, M.; Kawai, H.; Okawa, K. *Bull Chem. Sot. Japan* **1972,** 45.1162- 1167.
	- b Chakraborty, T.K.; Gangakhedkar, K.K. *Tetrahedron Lett*. **1991**, 32, 1897-189
	- C Berry, M.B.; Craig, D. Synktt **199&** 41- 44.
- 9. **Fujisawa, T.;** Hayakawa, R.; Shim& **M.** *Tetrahedron Lett* **1992,33, 75io3-7906.**
- **10- a** Li, Z.; Conser, K.R.; Jacobsen, E.N. *J. Amer. Chem. Soc.* 1993, 115, 5326-532
- **b** Evans, D.A.; Faul, M.M.; Bilodeau, M.T.; Anderson, B.A.; Barnes, D.M. *J. Amer. Chem Sot.* **1993,** *l&5,5328-5329.*
- **ll-**Mori, K.; Toda, F.; Tetrahedron Asym. **1990,1,281-282.**
- **12-** Poitou, F.; Dr. thesis, University of Aix-Marseille, March 1992.
- **13- a** Chen, C.S.; Sih, C.J. Angew. Chem. Int. Ed. **1989**, 28, 695-70
- **b** Boland, W.; FröB1, C.; Lorenz, M. Synthesis 1991, 1049-1072.
- c Faber, K.; Riva, S. Synthesis 1992, 895-91
- 14- **a** Bucciarelli, M.; Forni, A.; Moretti, I.; Prati, F. *Tetrahedron Asym.* **1990**, *1*, 5-8.
	- **b** Fuji, K.; Kawabata, T.; Kiryu, Y.; Sugiura, Y. *Tetrahedron Lett.* **1990**, 31, 6663-666
	- c Bucciarelli, M.; Forni, A.; Moretti, I.; Prati, F.; Torre, G. *Tetrahedron Asym.* **1993**, 4, 903-90
	- **d** Renold, P.; Tamm, C. *Tetrahedron Asym.* **1993**, 4, 2295-229
- **e** Bucciarelli, M.; Forni, A.; Moretti, I.; Prati, F.; Torre, G.J. Chem. Soc., Perkin *Trans. I* 1993, 3041-304
- **15- a** Deyrupand, J.A.; Moyer, C.L. *J. Org. Chem.* **1970**, 35, 3424-342
	- **b** Harada, K.; Nakamura, I. J. *Chem. Sot, Chem Comm.* **1978,522-523.**
- C Wenbert, D.; Fergusson, S.B.; Porter, B.; Quamstrtim, A.J. *Org. Chem.* **1985, SO,** 4114-4119.
- **16-** Lambert, C.; Viehe, H.G. *Tetrahedron Lett.* 1985, 26, 4439-4442.

17- Separation of the enantiomers using HPLC on Chiralcel OD-H (Daicel Company) for aziridines 4 (data presented at the " 18th International Symposium of Column Separation, 8- 13 May 1994 using GC on FS-Hydrodex β -PM (Macherey-Nagel) for the others. Minneapolis- USA),

- **18- a Ehrler, J.;** Seebach, **D.** *Liebigs Ann. Chem.* **1990,379-388.**
	- **b** Hulk, P.G.; Jones, J.B. *Tetrahedron Let&* 1992,33, 1399-1402.
	- c Wimmer, Z. Tetrahedron 1992, 48, 8431-8436.

(Received in France 13 July 1994; accepted 28 September 1994)